The Pharmacology of Plant Toxins

Dr. Ben T. Green Tuesday January 12, 2010

What is Pharmacology?

- Defined as: The study of drugs, their sources, preparations, and therapeutic uses.
- Pharmacodynamics: The study of mechanisms underlying drug action in the body.
- Pharmacokinetics: The study of drug disposition in the body.
- Pharmacotherapeutics: The identification and development of clinical applications for drugs to palliate, prevent, or cure disease.

Drug-Receptor Interactions

- The interaction of a chemical (ligand) with specific protein sites (receptors) either in the cell or on its surface.
 - Main classification of drugs.
 - Agonist, a drug that produces a biological effect.
 - Antagonist, a drug that opposes the actions of an agonist.

Classes of Receptors

Pharmacological Definition of Receptors

The receptor must allow for the recognition and binding of a drug and must satisfy the following criteria:

- •Saturability receptors exists in finite numbers.
- •Reversibility binding must occur by weak intermolecular forces (H-bonding, van der Waal forces).
- •Stereoselectivity receptors should recognize only one of the naturally occurring optical isomers (+ or -, d or I, or S or R).
- •Agonist specificity –related drugs should bind well, while physically dissimilar compounds should bind poorly.
- •**Tissue specificity** Drug concentrations should be physiologically relevant and binding should occur in in tissues known to be sensitive to the endogenous ligand.

Concentration-Effect Relationships of Agonists

- Agonist activity is correlated with its concentration at the receptor.
- This relationship can be plotted as a concentration-effect curve.
- Drug concentration is plotted on the x-axis against graded changes in the magnitude of drug effect on the y-axis.

Log Drug Concentration (Arbitrary Units)

Affinity

$$k_{on}$$
[ligand] + [receptor] \longleftrightarrow [ligand • receptor]
$$k_{off}$$

- The tenacity by which a drug its receptor.
- noles/liter) expresses the affinity g for a receptor.
 - [ligand] which occupies half receptors.
- ned by the use of radiolabelled l)-ligand.
- is often lower than the tration required to elicit a half-lological response (EC₅₀).

Efficacy

: also known as activity". The a drug to produce al biological relative to other apressed as E_{max}.

le antagonists intrinsic efficacy.

Log Drug Concentration (Arbitrary Units)

Potency

: ability of a drug to measured al change relative to gs.

d tissue or cell says potency must ssed as the 50% concentration Response % Maximum

Log Drug Concentration (Arbitrary Units)

Dose

- The quantity of drug usually represented as milligram of drug per kilogram of body weight (mg/kg).
- The dose of a drug that cause a half maximal response in an organism is known as the 50% effective dose (ED₅₀).

Affinities verses Potency of Selected Agonists From Plants

Toxin	Plant	Affinity, K _i (nM) α7-nAChR	Potency (μΜ) α7-nAChR
Nicotine	Common Tobacco Nicotiana tabacum	400	18
Anabasine	Tree Tobacco Nicotiana glauca	58	16.8
Anabaseine	Tree Tobacco Nicotiana glauca	58-759	6.7
Lobeline	Indian Tobacco Lobelia inflata	11000	No Effect

Drug Potencies Vary by Receptor Type

Toxin	Potency (μΜ) α7-nAChR	Potency (μΜ) α ₄ β ₂ -nAChR	Potency (μΜ) α ₃ β ₄ -nAChR
Nicotine	18	0.3	5
Anabasine	16.8	N.D.	N.D.
Anabaseine	6.7	4.2	N.D.
Lobeline	No Activation	N.D.	N.D.

Cell-Based Assays

- TE-671 cells
 - Express fetal human muscle-type nAChR $(\alpha 1_2 \beta 1 \gamma \delta)$.
- SH-SY5Y cells
 - Express autonomic type nAChRs containing α3 and β4 subunits.

Teratogenic Activity Profile

- Piperidine alkaloids
- Carbon side chain of at least three carbons or larger attached to the carbon alpha to the piperidine nitrogen increased teratogenic activity.
- A methyl group attached to the nitrogen reduced teratogenic activity.
- A double bond at the nitrogen or carbon side chain increases teratogenic activity

Ammodendrine

Nicotine

Anabasine

- Piperidine Alkaloid
 - •Isolated from *N. glauca* (tree tobacco)
 - Agonist
 - •Present in the plant as a racemate.

Anabaseine

- Carnivorous marine worm toxin
- Potent at neuromuscular receptors.
- Double (imine) bond between positions 1 and 2 of the piperidine ring.
- Isolated and identified from *Paranemertes* peregrina (purple ribbon worm).

anabaseine

Nicotine

- Pyridine Alkaloid
- N. tabacum
- Not very teratogenic when compared to the piperidine alkaloids.

Ammodendrine

- Lupinus Spp.
- Piperdine alkaloid
- Teratogenic in cattle

Relationship between potency, percent maximum response, and affinity of the teratogenic alkaloids.

- Each figure presents the potency, and percent maximal response and the affinity (estimated, negative logarithm of the affinity value (pK_a), of the alkaloids in TE-671 cells (A) and SH-SY5Y cells (B).
- Suggest the actions of these alkaloids are efficacy dependent.
- High concentrations of affinity-dependent agonists are required to produce a near maximum biological response.
- Lower concentrations of efficacy-dependent agonists can produce a near maximum biological responses. Efficacy-driven agonists would have a greater potential to produce fetal defects at low concentrations relative to their pKa value.

Competitive Antagonists

- Competitive antagonists have
- These with a the bindir recep the points.
- The e gonist can b

exces

A = agonist alone

B = antagonist (one concentration)

A+B = agonist + antagonist

Affinities of Selected Antagonists From Plants.

Toxin	Plant	Affinity, K _i (nM) α7-nAChR	Affinity, K _i (n M) α ₄ β ₂ -nAChR
D-tubocurarine	Chondodendron tomenosum	25000	13.9
Methyllycaconitine (MLA)	Delphinium spp.	0.69	3700
Erysodine	Erythrina spp.	4000	5
Dihydro-β- erythroidine	Erythrina spp.	9000	3.2

MLA

- •Isolated from *Delphinium* Spp. (Larkspur)
- Classified as an antagonistLacks intrinsic efficacy.
- Acts at nAChR.

